Identifying Frequent Patterns in Biochemical Reaction Networks – a Workflow
نویسندگان
چکیده
Background: Computational models in biology encode molecular and cell biological processes. These models often can be represented as biochemical reaction networks. Studying such networks, one is mostly interested in systems that share similar reactions and mechanisms. Typical goals of an investigation include understanding of the parts of a model, identification of reoccurring patterns, and recognition of biologically relevant motifs. The large number and size of available models, however, require automated methods to support researchers in achieving their goals. Specifically for the problem of finding patterns in large networks only partial solutions exist. Results: We propose a workflow that identifies frequent structural patterns in biochemical reaction networks encoded in the Systems Biology Markup Language. The workflow utilises a subgraph mining algorithm to detect frequent network patterns. Once patterns are identified, the textual pattern description can automatically be converted into a graphical representation. Furthermore, information about the distribution of patterns among the selected set of models can be retrieved. The workflow was validated with 575 models from the curated branch of BioModels. In this paper, we highlight interesting and frequent structural patterns. Further, we provide exemplary patterns that incorporate terms from the Systems Biology Ontology. Our workflow can be applied to a custom set of models or to models already existing in our graph database MaSyMoS. Conclusions: The occurrences of frequent patterns may give insight into the encoding of central biological processes, evaluate postulated biological motifs, or serve as a similarity measure for models that share common structures. Availability: https://github.com/FabienneL/BioNet-Mining Contact: [email protected]
منابع مشابه
Numerical modeling for nonlinear biochemical reaction networks
Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...
متن کاملFinding patterns in biochemical reaction networks
Computational models in biology encode molecular and cell biological processes. Many of them can be represented as biochemical reaction networks. Studying such networks, one is often interested in systems that share similar reactions and mechanisms. Typical goals are to understand the parts of a model, to identify reoccurring patterns, and to find biologically relevant motifs. The large number ...
متن کاملExtraction and Comparison of the Discharge Process in a Teaching Hospital
Background and Objectives: Patient discharge process starts from the point of the initial order of the physician order and continues to the discharge time of a patient and the release of the bed that was allocated to him/her. Lengthening the patient discharge process is regarded as a negative factor in the management of beds; this lengthy process leads to delay...
متن کاملReverse-engineering of biochemical reaction networks from spatio-temporal correlations of fluorescence fluctuations.
Recent developments of fluorescence labeling and highly advanced microscopy techniques have enabled observations of activities of biosignaling molecules in living cells. The high spatial and temporal resolutions of these video microscopy experiments allow detection of fluorescence fluctuations at the timescales approaching those of enzymatic reactions. Such fluorescence fluctuation patterns may...
متن کاملGlobal Sensitivity Analysis of Biochemical Reaction Networks Via Semidefinite Programming
We study the problem of computing outer bounds for the region of steady states of biochemical reaction networks modelled by ordinary differential equations, with respect to parameters that are allowed to vary within a predefined region. Using a relaxed version of the corresponding feasibility problem and its Lagrangian dual, we show how to compute certificates for regions in state space not con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017